ESA title
ESA Science Core Technology Development Success Story - Ground-Breaking Solution Enabling Demanding Optics Missions

ESA Science Core Technology Development Success Story - Ground-Breaking Solution Enabling Demanding Optics Missions [Aug/2022]

A pan-European collaboration, funded by ESA’s Science Core Technology programme, developed Silicon Carbide (Booster SiC) – an optical material that is stiff, low-density, highly thermally conductive with low thermal expansion, whilst meeting stringent mission requirements. ESA awarded funding to the French company France’s Mersen Boostec for SiC technology scale up, equipment, and facilities. The French company adopted a new approach and developed a disruptive product that is stiff, low density, highly thermally conductive and has a low thermal expansion, meeting stringent mission requirements for Herschel and many more relevant missions. The mission’s mirror resulted in being just a third of the mass of Hubble’s main mirror, despite providing twice the observing area.

Space science missions are particularly demanding, carrying highly complex instruments and requiring considerable precision and performance to ensure the acquisition of the highest quality of data. ESA’s Science missions are only getting more ambitious in their pursuit of pushing the boundaries of our scientific knowledge on the Universe. Therefore, the space observatories developed are becoming larger, and yet their mass needs to be restricted to ensure the feasibility of launch and sufficient mission duration. Materials traditionally used, such as glass-ceramic, are considerably too heavy to meet the stringent requirements of such ambitious science missions. Silicon Carbide (SiC) was identified as a promising potential solution to this mass/surface challenge.

Mersen Boostec’s involvement in ESA’s Science missions have allowed it to develop from a small, relatively specialised SME into being a leader in Europe for silicon carbide optical solutions. Overall, there are now 23 full-SiC telescopes operating in space from Mersen Boostec, with another 10 being prepared for launch, whilst at the same time the company is diversifying its portfolio into other market segments. Mersen Boostec has diversified its portfolio beyond the space domain, entering terrestrial markets such as laser scanning mirrors, the semi-conductor industry, and the fine chemicals industry. Through this, Mersen Boostec has an opportunity to capture a share of multi-billion euro and fast-growing markets.

Silicon Carbide has the benefit of being a non-toxic material, able to replace Beryllium in industries such as in laser processes, as well as being suitable for space missions requiring materials of high stiffness, light weight and the ability to withstand extreme temperatures whilst remaining stable. Therefore, the more SiC is used as a cost-efficient replacement for Beryllium, the more steps can be taken towards having safer work environments.

The Boostec SiC material not only provides Europe with increased competitiveness, but also feeds into the expansion of European non-dependence for developing, accessing and using core technologies.

The full case study report can be accessed in the restricted area here (please log in before).

The infographics can be accessed in the restricted area here (please log in before).

This initiative is led by ESA’s Science Core Technology Programme. More information can be accessed at ESA - Science Core Technology Programme (CTP)


More articles of the category: Space Economy Articles

Back to News Archive

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking "Accept All", you consent to the use of ALL the cookies. Read More